Module grscheller.boring_math.pythag3

Pythagorean triple iterator class.

  • Pythagorean triple are three integers a, b, c where a2 + b2 = c**2
  • such a triple is primitive when a, b, c > 0 and gcd(a, b, c) = 1
  • geometrically a, b, c represent the sides of a right triangle

Classes

class Pythag3 (last_square: int = 500)

Class supporting the generation of primitive Pythagorean triples.

Expand source code
class Pythag3():
    """Class supporting the generation of primitive Pythagorean triples."""
    def __init__(self, last_square: int=500):
        last_h = last_square if last_square % 2 == 1 else last_square - 1
        if last_h < 5:
            last_h = 5

        # Create perfect square lookup dictionary
        self.squares = {h*h: h for h in range(5, last_h + 1, 2)}
        self.last_h = last_h

    def extend_squares(self, last_to_square: int) -> None:
        """Extend the self.squares perfect square lookup table."""
        last_h = last_to_square if last_to_square % 2 == 1 else last_to_square - 1
        if last_h > self.last_h:
            # Extend perfect square lookup dictionary
            for h in range(self.last_h + 2, last_h + 1, 2):
                self.squares[h*h] = h
            self.last_h = last_h

    @staticmethod
    def cap_sides(a_max: int, max: Optional[int]=None) -> tuple[int, Callable[[int], int], int]:
        """Returns capped max values for sides a,b,c."""
        a_cap = 2 if a_max < 3 else a_max

        b_final: Callable[[int], int] = lambda a: (a**2 - 1) // 2  # theoretically, given side a
        if max is None:                                            # there are no more triples
            b_cap = b_final                                        # beyond this value for side b
        else:
            cap = 4 if max < 5 else max 
            if cap < a_cap + 2:
                a_cap = cap - 2
            b_cap = lambda a: min(b_final(a), iSqrt(cap**2 - a**2))

        c_cap = iSqrt(a_cap**2 + b_cap(a_cap)**2) + 1

        return a_cap, b_cap, c_cap

    def triples(self, a_start: int=3, a_max: int=3, max: Optional[int]=None) -> Iterator[tuple[int, int, int]]:
        """Returns an iterator of all possible primitive Pythagorean triples.

        * `(a, b, c)` where `a_start <= a <= a_max` and `0 < a < b < c < max`
        * if max not given, return all theoretically possible Pythagorean triples
        """
        a_init = 3 if a_start < 3 else a_start
        a_cap, b_cap, c_cap = self.cap_sides(a_max, max)
        self.extend_squares(c_cap)

        # Calculate Pythagorean triples
        for side_a in range(a_init, a_cap + 1):
            for side_b in range(side_a + 1, b_cap(side_a) + 1, 2):
                csq = side_a**2 + side_b**2
                if csq in self.squares:
                    if gcd(side_a, side_b) == 1:
                        yield side_a, side_b, self.squares[csq]

Static methods

def cap_sides(a_max: int, max: Optional[int] = None) ‑> tuple[int, typing.Callable[[int], int], int]

Returns capped max values for sides a,b,c.

Methods

def extend_squares(self, last_to_square: int) ‑> None

Extend the self.squares perfect square lookup table.

def triples(self, a_start: int = 3, a_max: int = 3, max: Optional[int] = None) ‑> Iterator[tuple[int, int, int]]

Returns an iterator of all possible primitive Pythagorean triples.

  • (a, b, c) where a_start <= a <= a_max and 0 < a < b < c < max
  • if max not given, return all theoretically possible Pythagorean triples