Module grscheller.boring_math.integer_math_cli
Entry points for grscheller.boring_math.integer_math cli scripts.
Supports automatically generated OS independent CLI scripts.
Expand source code
# Copyright 2023-2024 Geoffrey R. Scheller
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Entry points for grscheller.boring_math.integer_math cli scripts.
Supports automatically generated OS independent CLI scripts.
"""
from __future__ import annotations
__all__ = ['pythag3_cli', 'ackermann_cli']
__author__ = "Geoffrey R. Scheller"
__copyright__ = "Copyright (c) 2023-2024 Geoffrey R. Scheller"
__license__ = "Apache License 2.0"
import sys
from grscheller.boring_math.integer_math import ackermann, pythag3
# Number Theory mathematical script entry points
# Pythagorean Triples generator script
def pythag3_cli() -> None:
"""Find all primative pythagorian triples up to a given level.
A pythagorian triple are three integers (a,b,c) such
that a^2 + b^2 = c^2 where x,y,z > 0 and gcd(a,b,c) = 1
Usage: pythag3.py n [m]
One argument generates all triples with a <= n.
Two arguments generate all triples with a <= n and a,b,c <= m
"""
# Argument processing with some idiot checking
args = sys.argv[1:]
if len(args) > 1:
pythagTriples = pythag3(int(args[0]), int(args[1]))
elif len(args) > 0:
pythagTriples = pythag3(int(args[0]))
else:
pythagTriples = pythag3()
# Print out Pythagean Triples
for triple in pythagTriples:
print(triple)
# Computable but not primitive recursive functions scripts
def ackermann_cli() -> None:
"""Ackermann function is defined recursively by:
ackermann(0,n) = n+1
ackermann(m,0) = ackermann(m-1,1)
ackermann(m,n) = ackermann(m-1, ackermann(m, n-1)) for n,m > 0
Usage: ackermann.py m n
"""
# Argument parsing and checking
args = sys.argv[1:]
if len(args) == 2:
try:
m = int(args[0])
n = int(args[1])
if m < 0 or n < 0:
print("Error: Negative integer argument given" , file=sys.stderr)
sys.exit(1)
except ValueError:
print("Error: Non-integer argument given", file=sys.stderr)
sys.exit(1)
else:
print("Error: ackermann.py takes 2 arguments", file=sys.stderr)
sys.exit(1)
# Compute value
print(ackermann(m, n))
# Fibonacci script entry points
if __name__ == '__main__':
sys.exit(0)
Functions
def ackermann_cli() ‑> None
-
Ackermann function is defined recursively by:
ackermann(0,n) = n+1 ackermann(m,0) = ackermann(m-1,1) ackermann(m,n) = ackermann(m-1, ackermann(m, n-1)) for n,m > 0
Usage: ackermann.py m n
Expand source code
def ackermann_cli() -> None: """Ackermann function is defined recursively by: ackermann(0,n) = n+1 ackermann(m,0) = ackermann(m-1,1) ackermann(m,n) = ackermann(m-1, ackermann(m, n-1)) for n,m > 0 Usage: ackermann.py m n """ # Argument parsing and checking args = sys.argv[1:] if len(args) == 2: try: m = int(args[0]) n = int(args[1]) if m < 0 or n < 0: print("Error: Negative integer argument given" , file=sys.stderr) sys.exit(1) except ValueError: print("Error: Non-integer argument given", file=sys.stderr) sys.exit(1) else: print("Error: ackermann.py takes 2 arguments", file=sys.stderr) sys.exit(1) # Compute value print(ackermann(m, n))
def pythag3_cli() ‑> None
-
Find all primative pythagorian triples up to a given level.
A pythagorian triple are three integers (a,b,c) such that a^2 + b^2 = c^2 where x,y,z > 0 and gcd(a,b,c) = 1
Usage: pythag3.py n [m]
One argument generates all triples with a <= n. Two arguments generate all triples with a <= n and a,b,c <= m
Expand source code
def pythag3_cli() -> None: """Find all primative pythagorian triples up to a given level. A pythagorian triple are three integers (a,b,c) such that a^2 + b^2 = c^2 where x,y,z > 0 and gcd(a,b,c) = 1 Usage: pythag3.py n [m] One argument generates all triples with a <= n. Two arguments generate all triples with a <= n and a,b,c <= m """ # Argument processing with some idiot checking args = sys.argv[1:] if len(args) > 1: pythagTriples = pythag3(int(args[0]), int(args[1])) elif len(args) > 0: pythagTriples = pythag3(int(args[0])) else: pythagTriples = pythag3() # Print out Pythagean Triples for triple in pythagTriples: print(triple)